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Microstructure

     Figure 1 is a bright-field TEM image showing a
typical edge-on microstructure within a TiAl (γ)-Ti3Al
(α2) intermetallic nanolaminate.  In general, the material
contains two types of interfaces [1]: (1) The γ/α2

interphase interface which has a usual orientation

relationship (0001)α2 || (111)γ and <11 2 0>α2 || <110>γ.
(2) The γ/γ twin-related interface which includes true-
twin (180 o  rotational) and pseudoÐtwin (60 and/or 120 o

rotational) interfaces.  Here, the width of α 2 layers
ranges from 10 to 50 nm, and that of γ layers ranges
from 150 to 300 nm.  Figure 2 is a weak-beam dark-field
(WBDF) TEM image showing a typical dislocation
substructure within the nanolaminate.  Both lattice
dislocations (LD hereafter) within γ layer and a high
density of interfacial dislocations (ID  hereafter) on
inclined interfaces can be clearly seen.  The density of
ID  is much greater than that of L D, and the L D are
primarily threading dislocations which terminate their
two ends at the interfaces.  While the ID  on semi-
coherent γ/α2 and γ/γ pseudo-twin interfaces are
1/6<112> or 1/3<112> type misfit dislocations [2], the

on γ/γ true-twin interface are mainly 1/6[11 2 ] type
twinning dislocations or geometry necessary dislocations
for accommodating the departure of true-twin interface
from the exact (111) twin plane.

Fig. 1. Bright-field TEM image showing a lamellar
grain viewing from an edge-on orientation.

Fig. 2. WBDF image showing a typical dislocation
structure of an inclined nanolaminate.

Deformation twinning and proposed mechanisms

     When the nanolaminate was creep deformed at
760

o
C and 518 MPa, a deformation substructure

associated with deformation twins (D T hereafter)
within γ layers was developed.  A typical example of

the formation of (111) [211]-type D T within the
nanolaminate is shown in Fig. 3 (a).  It is noted that
one of the twin lamellae was still growing between
two lamellar interfaces, and its growth would be
eventually terminated by the lower interface.  This
observation suggests that the interfaces are preferred
nucleation sites for DT, presumably resulting from the
high local stresses caused by the pileup of ID.
Accordingly, it is proposed that deformation twinning
in the TiAl-Ti3Al nanolaminate can be viewed as a
stress relaxation process to relief the local stress
concentration caused by the pile-up of interfacial
dislocations during deformation.  The effective stress
(τe) at the tip of the pile-up of n dislocations can be
evaluated by τe = nτi [3], where τ i is the resolved shear
stress acting on the interface.  To relieve the stress



concentration, deformation twinning in γ layers is
therefore taking place by a dislocation reaction based
upon a stair-rod cross-slip mechanism [4,5].  As for an

example of the (111)-type DT formed in the
nanolaminate, the corresponding dislocation reaction

(dissociation) is proposed to be 1/6[121] (111) →
1/6[011] (100) + 1/6[112 ] ( 1 11).  The (111)-type DT is
accordingly formed by a successive cross-slip of the

twinning dislocations 1/6[112] on the (111) plane and
leaving the stair-rod dislocations 1/6[011] on the (100)
plane.  Twin (stacking) faults are subsequently formed
on the interfaces between the γ layer and DT.  This is
schematically illustrated in Fig. 3 (b).

(a)                                           (b)

Fig. 3. (a) A bright-field TEM image showing several

(111) type deformation twins formed growing process
toward another interface.  (b) Schematic illustration of

the nucleation of a (111) type DT from a γ/α2 interface,
where b1, b2, and b3 denote the interfacial, stair-rod, and
twinning dislocations, respectively.

     The formation of stair-rod dislocations at the
intersections between the DT and α 2 layer is evidenced
in Fig. 4, where the array of 1 / 6[011] stair-rod
dislocations become invisible [Fig. 4(a)] or visible [Fig.
4(b)] when a reflection vector (g) 200 or 021 is used for
imaging.  It is noted that the individual stair-rod
dislocation is not resolvable because of a narrow
distance (0.25 nm) between two stair-rod dislocations.
The significance of the proposed mechanism is to
reveal that there are several barriers to be overcome in
order to activate the twinning reaction.  These barriers
include (1) the repulsive force (F ) between the
interfacial (Shockley) and stair-rod dislocations, (2) the
increase of line energy due to the dislocation
dissociation, and (3) the increase of interfacial energy
due to the formation of twin faults.  Among them the

repulsive force (F) between the interfacial (Shockley)
and stair-rod dislocations is considered to be rate
controlling.  That is, a critical (minimum) stress (τc) is
required to activate the dissociation reaction for
twinning.

(a)                                        (b)

Fig. 4. Paired WBDF images demonstrating the
existence of the array of 1/6[011] stair-rod dislocations
at the intersections (indicated by arrows) between the

(111)-type DT and α 2 layer. (a) Invisible at g = 200

(g•b = 0), (b) visible at g = 021, Z (zone axis) ≈ [01 2].
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